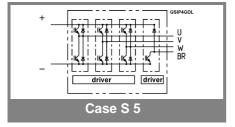
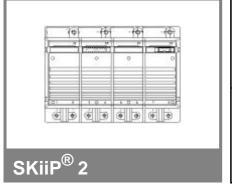

SKiiP 342GDL120-4DU

7-pack - integrated intelligent Power System


Power section - brake chopper SKiiP 342GDL120-4DU

Power section features

- · SKiiP technology insid
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal


Absolute Maximum Ratings		Γ _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	300 (225)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	300 (225)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	2160	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	23	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics T _s =						= 25 °C unless otherwise specified			
	/mbol Conditions				min.		max.	Units	
_	Conditio	115			111111.	typ.	IIIax.	Ullits	
IGBT	lı = 250 A	T = 25 (1	25) °C		i	2,6 (3,1)	3,1	l v	
V _{CEsat} V _{CEO}	$I_C = 250 \text{ A},$ $T_i = 25 (125)$		25) C			,	ا,5 1,5 (1,6)	V	
	$T_i = 25 (125)$						6,3 (8,1)	mΩ	
r _{CE}	,					(15)	0.4	mA	
I _{CES}	$V_{GE} = 0 \text{ V}, \text{ V}$		ES [,]			(13)	0,4	IIIA	
	T _j = 25 (125		211						
E _{on} + E _{off}	$I_C = 250 A,$						75	mJ	
	T _j = 125 °C						132	mJ	
R _{CC' + EE'}	terminal chi	p, $T_j = 12$	5 °C			0,5		mΩ	
L _{CE}	top, bottom					15		nH	
C _{CHC}	per phase,	AC-side				1,4		nF	
Inverse o	diode								
$V_F = V_{EC}$	$I_F = 250 A,$	$T_i = 25 (1$	25) °C			2,1 (2)	2,6	V	
V_{TO}	$T_i = 25 (125)$					1,3 (1)	1,4 (1,1)	V	
r _T	T _i = 25 (125) °C					3,3 (4)	4,5 (5,2)	mΩ	
E _{rr}	$I_{\rm C} = 250 \text{A},$	$V_{CC} = 60$	0 V				10	mJ	
	T _j = 125 °C	$V_{CC} = 90$	00 V				12	mJ	
Mechani	cal data								
M _{dc}	DC termina	ls, SI Uni	ts		6		8	Nm	
M _{ac}	AC terminals, SI Units				13		15	Nm	
w	SKiiP® 2 System w/o heat sink					3,5		kg	
w	heat sink					8,5		kg	
Thermal	character	istics (P16 hea	t sink; 2	75 m ³ /h);	" _" refer	ence to		
	ture sense				,	r			
R _{th(j-s)I}	per IGBT						0,09	K/W	
R _{th(j-s)D}	per diode						0,25	K/W	
R _{th(s-a)}	per module						0,036	K/W	
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	10	69	11	0	1	0,13	0,001	1	
$Z_{\text{th(j-r)D}}$	28	193	30	0	1	0,13	0,001	1	
$Z_{th(r-a)}$	1,7	24	7,6	2,6	494	165	20	0,03	

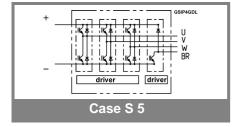
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 342GDL120-4DU

Absolute Maximum Ratings		Γ _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	5	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C	

7-pack - integrated intelligent Power System

7-pack integrated gate driver - brake chopper SKiiP 342GDL120-4DU


Gate driver features

- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 25/85/56

Characte	eristics		(T _a = 25 °C		
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	67+10	67+10*f/f _{max} +0*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	67+10	67+10*f/f _{max} +0*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		20,2		μs
t _{d(off)IO}	input-output turn-off propagation time		25,6		μs
tpERRRESET	error memory reset time	300000			μs
t _{TD}	top / bottom switch : interlock time				μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage				Α
ı	(available when supplied with 24 V)				mA
Vs1outmax	output current at pin				mA
I _{A0max} V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)				Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
UDCTRIP	trip level of U _{DC} -protection				V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

